Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme a ligases with spatially distinct metabolic roles in quaking aspen.

Identifieur interne : 004602 ( Main/Exploration ); précédent : 004601; suivant : 004603

Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme a ligases with spatially distinct metabolic roles in quaking aspen.

Auteurs : Scott A. Harding [États-Unis] ; Jacqueline Leshkevich ; Vincent L. Chiang ; Chung-Jui Tsai

Source :

RBID : pubmed:11842147

Descripteurs français

English descriptors

Abstract

4-Coumarate:coenzyme A ligase (4CL) activates hydroxycinnamates for entry into phenylpropanoid branchways that support various metabolic activities, including lignification and flavonoid biosynthesis. However, it is not clear whether and how 4CL proteins with their broad substrate specificities fulfill the specific hydroxycinnamate requirements of the branchways they supply. Two tissue-specific 4CLs, Pt4CL1 and Pt4CL2, have previously been cloned from quaking aspen (Populus tremuloides Michx.), but whether they are catalytically adapted for the distinctive metabolic roles they are thought to support is not apparent from published biochemical data. Therefore, single- and mixed-substrate assays were conducted to determine whether the 4CLs from aspen exhibit clear catalytic identities under certain metabolic circumstances. Recombinant Pt4CL1 and Pt4CL2 exhibited the expected preference for p-coumarate in single-substrate assays, but strong competitive inhibition favored utilization of caffeate and p-coumarate, respectively, in mixed-substrate assays. The Pt4CL1 product, caffeoyl-CoA, predominated in mixed-substrate assays with xylem extract, and this was consistent with the near absence of Pt4CL2 expression in xylem tissue as determined by in situ hybridization. It is interesting that the Pt4CL2 product p-coumaroyl-CoA predominated in assays with developing leaf extract, although in situ hybridization revealed that both genes were coexpressed. The xylem extract and recombinant 4CL1 data allow us to advance a mechanism by which 4CL1 can selectively utilize caffeate for the support of monolignol biosynthesis in maturing xylem and phloem fibers. Loblolly pine (Pinus taeda), in contrast, possesses a single 4CL protein exhibiting broad substrate specificity in mixed-substrate assays. We discuss these 4CL differences in terms of the contrasts in lignification between angiosperm trees and their gymnosperm progenitors.

DOI: 10.1104/pp.010603
PubMed: 11842147
PubMed Central: PMC148906


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme a ligases with spatially distinct metabolic roles in quaking aspen.</title>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leshkevich, Jacqueline" sort="Leshkevich, Jacqueline" uniqKey="Leshkevich J" first="Jacqueline" last="Leshkevich">Jacqueline Leshkevich</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2002">2002</date>
<idno type="RBID">pubmed:11842147</idno>
<idno type="pmid">11842147</idno>
<idno type="doi">10.1104/pp.010603</idno>
<idno type="pmc">PMC148906</idno>
<idno type="wicri:Area/Main/Corpus">004684</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">004684</idno>
<idno type="wicri:Area/Main/Curation">004684</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">004684</idno>
<idno type="wicri:Area/Main/Exploration">004684</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme a ligases with spatially distinct metabolic roles in quaking aspen.</title>
<author>
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
<affiliation wicri:level="2">
<nlm:affiliation>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931</wicri:regionArea>
<placeName>
<region type="state">Michigan</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Leshkevich, Jacqueline" sort="Leshkevich, Jacqueline" uniqKey="Leshkevich J" first="Jacqueline" last="Leshkevich">Jacqueline Leshkevich</name>
</author>
<author>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
</author>
<author>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="ISSN">0032-0889</idno>
<imprint>
<date when="2002" type="published">2002</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Acyl Coenzyme A (metabolism)</term>
<term>Caffeic Acids (metabolism)</term>
<term>Cloning, Molecular (MeSH)</term>
<term>Coenzyme A Ligases (genetics)</term>
<term>Coenzyme A Ligases (metabolism)</term>
<term>Coumaric Acids (metabolism)</term>
<term>Flavonoids (biosynthesis)</term>
<term>Flavonoids (chemistry)</term>
<term>Gene Expression Regulation, Enzymologic (MeSH)</term>
<term>Gene Expression Regulation, Plant (MeSH)</term>
<term>In Situ Hybridization (MeSH)</term>
<term>Isoenzymes (genetics)</term>
<term>Isoenzymes (metabolism)</term>
<term>Kinetics (MeSH)</term>
<term>Lignin (biosynthesis)</term>
<term>Lignin (chemistry)</term>
<term>Pinus (enzymology)</term>
<term>Pinus (genetics)</term>
<term>Plant Stems (cytology)</term>
<term>Plant Stems (enzymology)</term>
<term>Plant Stems (genetics)</term>
<term>Promoter Regions, Genetic (MeSH)</term>
<term>Recombinant Proteins (metabolism)</term>
<term>Salicaceae (enzymology)</term>
<term>Salicaceae (genetics)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Acides caféiques (métabolisme)</term>
<term>Acides coumariques (métabolisme)</term>
<term>Acyl coenzyme A (métabolisme)</term>
<term>Cinétique (MeSH)</term>
<term>Clonage moléculaire (MeSH)</term>
<term>Coenzyme A ligases (génétique)</term>
<term>Coenzyme A ligases (métabolisme)</term>
<term>Flavonoïdes (biosynthèse)</term>
<term>Flavonoïdes (composition chimique)</term>
<term>Hybridation in situ (MeSH)</term>
<term>Isoenzymes (génétique)</term>
<term>Isoenzymes (métabolisme)</term>
<term>Lignine (biosynthèse)</term>
<term>Lignine (composition chimique)</term>
<term>Pinus (enzymologie)</term>
<term>Pinus (génétique)</term>
<term>Protéines recombinantes (métabolisme)</term>
<term>Régions promotrices (génétique) (MeSH)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes (MeSH)</term>
<term>Régulation de l'expression des gènes végétaux (MeSH)</term>
<term>Salicaceae (enzymologie)</term>
<term>Salicaceae (génétique)</term>
<term>Tiges de plante (cytologie)</term>
<term>Tiges de plante (enzymologie)</term>
<term>Tiges de plante (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="biosynthesis" xml:lang="en">
<term>Flavonoids</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Flavonoids</term>
<term>Lignin</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Coenzyme A Ligases</term>
<term>Isoenzymes</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Acyl Coenzyme A</term>
<term>Caffeic Acids</term>
<term>Coenzyme A Ligases</term>
<term>Coumaric Acids</term>
<term>Isoenzymes</term>
<term>Recombinant Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="biosynthèse" xml:lang="fr">
<term>Flavonoïdes</term>
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Flavonoïdes</term>
<term>Lignine</term>
</keywords>
<keywords scheme="MESH" qualifier="cytologie" xml:lang="fr">
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="cytology" xml:lang="en">
<term>Plant Stems</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Pinus</term>
<term>Salicaceae</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Pinus</term>
<term>Plant Stems</term>
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Pinus</term>
<term>Plant Stems</term>
<term>Salicaceae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Coenzyme A ligases</term>
<term>Isoenzymes</term>
<term>Pinus</term>
<term>Salicaceae</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Acides caféiques</term>
<term>Acides coumariques</term>
<term>Acyl coenzyme A</term>
<term>Coenzyme A ligases</term>
<term>Isoenzymes</term>
<term>Protéines recombinantes</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Cloning, Molecular</term>
<term>Gene Expression Regulation, Enzymologic</term>
<term>Gene Expression Regulation, Plant</term>
<term>In Situ Hybridization</term>
<term>Kinetics</term>
<term>Promoter Regions, Genetic</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cinétique</term>
<term>Clonage moléculaire</term>
<term>Hybridation in situ</term>
<term>Régions promotrices (génétique)</term>
<term>Régulation de l'expression des gènes codant pour des enzymes</term>
<term>Régulation de l'expression des gènes végétaux</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">4-Coumarate:coenzyme A ligase (4CL) activates hydroxycinnamates for entry into phenylpropanoid branchways that support various metabolic activities, including lignification and flavonoid biosynthesis. However, it is not clear whether and how 4CL proteins with their broad substrate specificities fulfill the specific hydroxycinnamate requirements of the branchways they supply. Two tissue-specific 4CLs, Pt4CL1 and Pt4CL2, have previously been cloned from quaking aspen (Populus tremuloides Michx.), but whether they are catalytically adapted for the distinctive metabolic roles they are thought to support is not apparent from published biochemical data. Therefore, single- and mixed-substrate assays were conducted to determine whether the 4CLs from aspen exhibit clear catalytic identities under certain metabolic circumstances. Recombinant Pt4CL1 and Pt4CL2 exhibited the expected preference for p-coumarate in single-substrate assays, but strong competitive inhibition favored utilization of caffeate and p-coumarate, respectively, in mixed-substrate assays. The Pt4CL1 product, caffeoyl-CoA, predominated in mixed-substrate assays with xylem extract, and this was consistent with the near absence of Pt4CL2 expression in xylem tissue as determined by in situ hybridization. It is interesting that the Pt4CL2 product p-coumaroyl-CoA predominated in assays with developing leaf extract, although in situ hybridization revealed that both genes were coexpressed. The xylem extract and recombinant 4CL1 data allow us to advance a mechanism by which 4CL1 can selectively utilize caffeate for the support of monolignol biosynthesis in maturing xylem and phloem fibers. Loblolly pine (Pinus taeda), in contrast, possesses a single 4CL protein exhibiting broad substrate specificity in mixed-substrate assays. We discuss these 4CL differences in terms of the contrasts in lignification between angiosperm trees and their gymnosperm progenitors.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">11842147</PMID>
<DateCompleted>
<Year>2002</Year>
<Month>06</Month>
<Day>27</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print">
<Journal>
<ISSN IssnType="Print">0032-0889</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>128</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2002</Year>
<Month>Feb</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme a ligases with spatially distinct metabolic roles in quaking aspen.</ArticleTitle>
<Pagination>
<MedlinePgn>428-38</MedlinePgn>
</Pagination>
<Abstract>
<AbstractText>4-Coumarate:coenzyme A ligase (4CL) activates hydroxycinnamates for entry into phenylpropanoid branchways that support various metabolic activities, including lignification and flavonoid biosynthesis. However, it is not clear whether and how 4CL proteins with their broad substrate specificities fulfill the specific hydroxycinnamate requirements of the branchways they supply. Two tissue-specific 4CLs, Pt4CL1 and Pt4CL2, have previously been cloned from quaking aspen (Populus tremuloides Michx.), but whether they are catalytically adapted for the distinctive metabolic roles they are thought to support is not apparent from published biochemical data. Therefore, single- and mixed-substrate assays were conducted to determine whether the 4CLs from aspen exhibit clear catalytic identities under certain metabolic circumstances. Recombinant Pt4CL1 and Pt4CL2 exhibited the expected preference for p-coumarate in single-substrate assays, but strong competitive inhibition favored utilization of caffeate and p-coumarate, respectively, in mixed-substrate assays. The Pt4CL1 product, caffeoyl-CoA, predominated in mixed-substrate assays with xylem extract, and this was consistent with the near absence of Pt4CL2 expression in xylem tissue as determined by in situ hybridization. It is interesting that the Pt4CL2 product p-coumaroyl-CoA predominated in assays with developing leaf extract, although in situ hybridization revealed that both genes were coexpressed. The xylem extract and recombinant 4CL1 data allow us to advance a mechanism by which 4CL1 can selectively utilize caffeate for the support of monolignol biosynthesis in maturing xylem and phloem fibers. Loblolly pine (Pinus taeda), in contrast, possesses a single 4CL protein exhibiting broad substrate specificity in mixed-substrate assays. We discuss these 4CL differences in terms of the contrasts in lignification between angiosperm trees and their gymnosperm progenitors.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Harding</LastName>
<ForeName>Scott A</ForeName>
<Initials>SA</Initials>
<AffiliationInfo>
<Affiliation>Plant Biotechnology Research Center, School of Forestry and Wood Products, Michigan Technological University, Houghton, MI 49931, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Leshkevich</LastName>
<ForeName>Jacqueline</ForeName>
<Initials>J</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Chiang</LastName>
<ForeName>Vincent L</ForeName>
<Initials>VL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Tsai</LastName>
<ForeName>Chung-Jui</ForeName>
<Initials>CJ</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D003160">Comparative Study</PublicationType>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000214">Acyl Coenzyme A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D002109">Caffeic Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D003373">Coumaric Acids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D005419">Flavonoids</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D007527">Isoenzymes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C119167">feruloyl-CoA</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>1782-55-4</RegistryNumber>
<NameOfSubstance UI="C071744">5-hydroxyferulic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>53034-79-0</RegistryNumber>
<NameOfSubstance UI="C058645">caffeoyl-coenzyme A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>9005-53-2</RegistryNumber>
<NameOfSubstance UI="D008031">Lignin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>AVM951ZWST</RegistryNumber>
<NameOfSubstance UI="C004999">ferulic acid</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.2.1.-</RegistryNumber>
<NameOfSubstance UI="D003066">Coenzyme A Ligases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 6.2.1.12</RegistryNumber>
<NameOfSubstance UI="C019943">4-coumarate-CoA ligase</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>U2S3A33KVM</RegistryNumber>
<NameOfSubstance UI="C040048">caffeic acid</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000214" MajorTopicYN="N">Acyl Coenzyme A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002109" MajorTopicYN="N">Caffeic Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003001" MajorTopicYN="N">Cloning, Molecular</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003066" MajorTopicYN="N">Coenzyme A Ligases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D003373" MajorTopicYN="N">Coumaric Acids</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005419" MajorTopicYN="N">Flavonoids</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D015971" MajorTopicYN="N">Gene Expression Regulation, Enzymologic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018506" MajorTopicYN="N">Gene Expression Regulation, Plant</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017403" MajorTopicYN="N">In Situ Hybridization</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007527" MajorTopicYN="N">Isoenzymes</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007700" MajorTopicYN="N">Kinetics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008031" MajorTopicYN="N">Lignin</DescriptorName>
<QualifierName UI="Q000096" MajorTopicYN="N">biosynthesis</QualifierName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028223" MajorTopicYN="N">Pinus</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000166" MajorTopicYN="N">cytology</QualifierName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011401" MajorTopicYN="N">Promoter Regions, Genetic</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D031308" MajorTopicYN="N">Salicaceae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="N">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="pubmed">
<Year>2002</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2002</Year>
<Month>6</Month>
<Day>28</Day>
<Hour>10</Hour>
<Minute>1</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2002</Year>
<Month>2</Month>
<Day>14</Day>
<Hour>10</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">11842147</ArticleId>
<ArticleId IdType="doi">10.1104/pp.010603</ArticleId>
<ArticleId IdType="pmc">PMC148906</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Planta. 1996;200(1):13-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8987616</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Biochem Biophys. 1977 Nov;184(1):237-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">921295</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Feb;113(2):321-325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1993 Aug;102(4):1147-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8278545</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochimie. 1976;58(10):1255-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1009179</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1999 Aug 3;96(16):8955-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10430877</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 1999 Jul;19(1):9-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10417722</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2000 Feb 4;467(1):117-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10664468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jul;114(3):871-879</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12223748</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Apr 28;95(9):5407-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9560289</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1996 Sep;112(1):193-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8819324</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1997 May 13;94(10):5461-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9144260</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Z Naturforsch C. 1975 May-Jun;30(3):352-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">126581</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1991 May 5;266(13):8551-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2022667</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1999 Feb;119(2):375-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9952432</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Mol Biol. 1999 Mar;39(4):657-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10350081</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1995 May;108(1):85-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7784527</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1975 Mar 17;52(2):311-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">240682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Mar 3;275(9):6537-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10692459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1997 Jan;113(1):65-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9008388</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1994 Dec;14(2-3):94-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24192872</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1995 Jul;7(7):1085-1097</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12242399</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2001 Jul;13(7):1567-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11449052</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 1999 Aug;17(8):808-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10429249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1976 May 7;72:248-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">942051</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 1983 May;158(3):225-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24264611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1998 Feb;116(2):743-54</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9489021</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1993 Nov 15;215(1):86-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7507651</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Physiol Plant Mol Biol. 1998 Jun;49:585-609</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15012247</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Michigan</li>
</region>
</list>
<tree>
<noCountry>
<name sortKey="Chiang, Vincent L" sort="Chiang, Vincent L" uniqKey="Chiang V" first="Vincent L" last="Chiang">Vincent L. Chiang</name>
<name sortKey="Leshkevich, Jacqueline" sort="Leshkevich, Jacqueline" uniqKey="Leshkevich J" first="Jacqueline" last="Leshkevich">Jacqueline Leshkevich</name>
<name sortKey="Tsai, Chung Jui" sort="Tsai, Chung Jui" uniqKey="Tsai C" first="Chung-Jui" last="Tsai">Chung-Jui Tsai</name>
</noCountry>
<country name="États-Unis">
<region name="Michigan">
<name sortKey="Harding, Scott A" sort="Harding, Scott A" uniqKey="Harding S" first="Scott A" last="Harding">Scott A. Harding</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 004602 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 004602 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:11842147
   |texte=   Differential substrate inhibition couples kinetically distinct 4-coumarate:coenzyme a ligases with spatially distinct metabolic roles in quaking aspen.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:11842147" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020